
Okana gan

COSC 123

Computer Creativity

Okana gan

COSC 123

Computer Creativity

Slides courtesy of Dr. Abdallah Mohamed.

Introduction to
Processing

COSC 123 – 2COSC 123 – 2

Announcements
¥ Ed Discussion

¥ EVERYBODY should now be on Ed Discussion! If you aren’t, send
me an email firas.moosvi@ubc.ca with a non-UBC email so I can
invite you

¥ PrairieLearn (Test 0)
¥ Test 0 was not for marks, but it was supposed to get you familiar

with the testing system.
¥ 80 (!!!!) of you have yet to do this!

¥ Test 1 Window will be open Thursday at 6 PM!
¥ You will have until Saturday at 6 PM to complete the 60 min Test!

¥ Thursday’s class is CANCELLED due to (my) unforeseen
circumstances. We will finish content for the week today…

Okana gan

COSC 123

Computer Creativity

Okana gan

COSC 123

Computer Creativity

Slides courtesy of Dr. Abdallah Mohamed.

Processing Examples

COSC 123 – 4COSC 123 – 4

Course Objectives
1) To be creative with programming and write fun, interesting

computer programs.

2) To master fundamental programming skills of data variables,
decisions, iteration, methods, and the basics of object-oriented
programming, and how to create larger programs

3) To design and develop strategies for solving basic programing
problems.

4) To algorithmically create 2D graphics, animations, and simple
games using Processing language.

5) To design interactive graphical user interfaces.

6) To learn to solve problems cooperatively as a team (of two).

7) To learn how to switch from Processing to Java.

COSC 123 – 5COSC 123 – 5

The Essence of the Course
¥ If you walk out of this course with nothing else you should:

Become a creative programmer with the ability to problem
solve, perform critical thinking, and communicate precisely.

¥ This course is not only about learning a particular language (or
even programming itself), it is about being a creative problem
solver and critical thinker!

COSC 123 – 6COSC 123 – 6

Programming using Processing
¥ You already learned algorithmic thinking using basic

programming techniques in COSC111 and COSC122.

¥ In addition to being able to solving algorithmic problems (similar
to what you did in COSC 111 or COSC 122), we will try to re-
learn programming using graphical functions, especially to
create user interfaces, animations, and simple 2D games.

¥ We will use basic programming techniques (e.g. conditionals,
loops, arrays, objects, etc.) on Sketches to draw and interact
with shapes and images.

By: Michael Pinn

COSC 123 – 7COSC 123 – 7

Processing Examples!
¥ Algorithmic Drawing

¥ Example: Artistic Designs

By: Sabrina Verhage

COSC 123 – 8COSC 123 – 8

Processing Examples!
¥ Artistic Animations

¥ Example:

By: Michael Pinn

COSC 123 – 9COSC 123 – 9

Processing Examples!
¥ Artistic Animations

¥ Example: particle systems

By: Timo Lachmeijer

COSC 123 – 10COSC 123 – 10

Processing Examples!
¥ Interactive Animations

¥ Example: controlled particle system

By: Konrad Jünger

COSC 123 – 11COSC 123 – 11

Processing Examples!
¥ Interactive Animations

¥ Example: Google Doodle (June 2017)

https://www.google.com/doodles/oskar-fischingers-117th-birthday

COSC 123 – 12COSC 123 – 12

Processing Examples!
¥ Interactive Animations

¥ Example: 2D Games

Game name: Toon Shooters 2

COSC 123 – 13COSC 123 – 13

Example of things you will do!

COSC 123 – 14COSC 123 – 14

Example of things you will do!

COSC 123 – 15COSC 123 – 15

Example of things you will do!

Player needs to
move the paddle to

hit the ball up

When the ball is hit, score
is incremented and ball

speed increases

If ball touches bottom
edge, game is over,
and animation stops.

Game is Over.

COSC 123 – 16COSC 123 – 16

Why this Course is Important
¥ This course will make programming fun and relevant.

¥ Our economy, health, and entertainment is dependent on software
written by programmers.

¥ We will learn to be creative programmers, so that we may create
great software to be used by others.

¥ Important results:
¥ Storyboarding – We will sketch our stories before programing

them.
¥ Algorithmic Thinking – We will learn how to solve problems by

specifying precise sequences of actions.
¥ Collaboration – We will program in teams of two to build

interpersonal skills and increase our knowledge.
¥ Processing and Java Languages – We will use Processing which

is based on Java programming language – Java can be used in
many areas including future computer science courses.

Okana gan

COSC 123

Computer Creativity

Okana gan

COSC 123

Computer Creativity

Slides courtesy of Dr. Abdallah Mohamed.

Getting Started with
Processing

1) What is Processing

2) Experiment with the Processing Development Environment.

3) Printing on the console

COSC 123 – 19COSC 123 – 19

The Processing Language
¥ Processing is a programming environment that aims to help

create visually oriented applications, such as sketches,
animations, and games.

¥ Processing consists of:
¥ The Processing Development Environment (PDE).

n The software we will use to write and run our code in this course.
n Has a minimalist set of features suitable for developing small programs

¥ The Processing core API and other libraries
n A collection of functions (aka commands or methods) for performing

the different actions in a program.

¥ A language syntax identical to Java.
n Processing is Java, but with simpler syntax.
n Processing was ported to other languages later (e.g. JS, Python).

COSC 123 – 20COSC 123 – 20

Processing Development Environment (PDE)

Menu

Run / Stop

Sketch name

Your code goes into the
Text Editor here

Console and Errors Window

The code
represents a
sketch. Each sketch
is actually a
subclass of the
PApplet Java
class

Message
Area

COSC 123 – 21COSC 123 – 21

PDE: Creating and Running a Sketch
¥ To create a program code

file, select File->New or

¥ Your new program is called
a sketch in Processing.
Sketches are saved in a
folder on your computer
called sketchbook.

¥ To write your code, start
typing in the Text Editor”
area of the PDE.

¥ Use the buttons Run and
Stop on the toolbar to run or
terminate your program.

COSC 123 – 22COSC 123 – 22

PDE: The Console Window
¥ The console

window displays
1) Text output, e.g.

when printing
text using
print() and
println()
functions.

2) Error messages

COSC 123 – 23COSC 123 – 23

Functions
¥ A function is a sequence of statements that performs a specific

action.
¥ Creating a function avoids repeating statements and allows for

better code organization.

¥ A function must have a name. Whenever we want to perform the
function’s action, we need to call (invoke) the function by its
name.
¥ For example, to print something on the console, we write

println("Hello World");

¥ Processing comes with a library of predefined functions that
may be used to perform different actions such as drawing
shapes. To use these functions, you need to call their names
with the appropriate parameters.
¥ In Java, a function is also called a “method”.

COSC 123 – 24COSC 123 – 24

ExerciseExercise

Output Text to the Console
¥ Use print() and println() to display the following text on the

console. Note that the number 6 on the second line is computed
as 3*2.

COSC 123 – 25COSC 123 – 25

ExerciseExercise

Output Text to the Console
¥ What is the output of this program? Explain.

2D Coordinate System

COSC 123 – 27COSC 123 – 27

The Coordinate System
¥ Drawing on the screen is done by specifying coordinates which

refer to a location on the screen.

¥ By default
¥ origin is the upper-left hand corner of the screen.
¥ x coordinate is horizontal, getting bigger as we move right.
¥ y coordinate is vertical, getting bigger as we move down.

(0,0)

y

(80,10)

(30,70)

x

COSC 123 – 28COSC 123 – 28

QuestionQuestion

Coordinate system
Assume we have the 100x100 sketch shown below. Each small
square is 10x10 pixels. What is the (x , y) location of the point?

A. (30, 50)

B. (50, 30)

C. (3, 5)

D. (5, 3)

E. None of the above

COSC 123 – 29COSC 123 – 29

Drawing Primitive Shapes
¥ To draw shapes on the screen, we call the function that

represent each shape with arguments representing the shape
dimensions.

¥ Example of primitive shapes
¥ Point: point(90,60);

¥ Line: line(50,10,70,20);

¥ Rectangle: rect(10,25,40,20);

¥ Ellipse: ellipse(50,70,40,20);

Function name Parameters

COSC 123 – 30COSC 123 – 30

Drawing Primitive Shapes, cont’d

y

x

line(50,10,70,20);

10 20 30 40 50 60 70 80 90
80

70
60

50
40

30
20

10
0

point(90,60);

rect(10,25,40,20);

ellipse(50,70,40,20);

Start point End point

top-left point width height

center point width height

COSC 123 – 31COSC 123 – 31

Drawing Primitive Shapes, cont’d
¥ Here is the Processing code and output

// draw the shapes
line(50,10,70,20);
rect(10,25,40,20);
point(90,60);
ellipse(50,70,40,20);

Okana gan

COSC 123

Computer Creativity

Okana gan

COSC 123

Computer Creativity

Slides courtesy of Dr. Abdallah Mohamed.

Processing Basics
Notes

¥ This are notes. After finishing reading these notes, you should

be able to:
¥ Create a new processing file

¥ Draw four primitive shapes: point, line, rectangle, and oval

¥ Set the sketch size.

¥ Add comments to your code

¥ Recognize that processing is case-sensitive and accepts free-form

format.

COSC 123 – 34COSC 123 – 34

PDE: Creating and Running a Sketch
¥ To create a program code

file, select File->New or

¥ Your new program is called
a sketch in Processing.
Sketches are saved in a
folder on your computer
called sketchbook.

¥ To write your code, start
typing in the Text Editor”
area of the PDE.

¥ Use the buttons Run and
Stop on the toolbar to run or
terminate your program.

COSC 123 – 35COSC 123 – 35

Primitive Shapes
¥ Example of primitive shapes

¥ Point: point(90,60);

¥ Line: line(50,10,70,20);

¥ Rectangle: rect(10,25,40,20);

¥ Ellipse: ellipse(50,70,40,20);

Function name Parameters

COSC 123 – 36COSC 123 – 36

Drawing Primitive Shapes

y

x

line(50,10,70,20);

10 20 30 40 50 60 70 80 90
80

70
60

50
40

30
20

10
0

point(90,60);

rect(10,25,40,20);

ellipse(50,70,40,20);

Start point End point

top-left point width height

center point width height

COSC 123 – 37COSC 123 – 37

Sketch Size
¥ To set the size of your sketch, use the size() function. For

example, the following line sets the sketch width and height to
400 and 200 pixels respectively.

size(400,200);

200
pixels

400
pixels

COSC 123 – 38COSC 123 – 38

Sketch Size: Example
¥ In the previous class, you wrote code to draw primitive shapes.
¥ The standard size of a sketch is 100x100 pixels
¥ The following program changes the size of the sketch to

150x150.

// set sketch size to 150x150
size(150,150);

// draw shapes
line(50,10,70,20);
rect(10,25,40,20);
point(90,60);
ellipse(50,70,40,20);

COSC 123 – 39COSC 123 – 39

Sketch in Full Screen
¥ You can run your code in full screen using the function

fullScreen();

¥ You can choose only ONE of the two functions fullScreen()
and size() in any program.

// sketch in full screen
fullScreen();

// draw shapes
line(50,10,70,20);
rect(10,25,40,20);
point(90,60);
ellipse(50,70,40,20);

Syntax Rules

COSC 123 – 41COSC 123 – 41

Syntax Rules: Comments
¥ Comments are used by the programmer to document and

explain the code. Comments are ignored by the computer.

¥ There are two choices for commenting:
¥ 1) One line comment: put “//” before the comment and any

characters to the end of line are ignored by the computer.
¥ 2) Multiple line comment: put “/*” at the start of the comment and

“*/” at the end of the comment. The computer ignores everything
between the start and end comment indicators.

¥ Example: /* This is a multiple line

comment.

With many lines. */

// Single line comment

// Single line comment again

line(10,10,20,20); // Comment after code

COSC 123 – 42COSC 123 – 42

More Syntax Rules
¥ To program in Processing you must follow a set of rules for

specifying your commands. This set of rules is called a syntax.

¥ Processing is case sensitive.
¥ Line() is not the same as line().

¥ Processing accepts free-form layout.
¥ Spaces and line breaks are not important except to separate

words.
¥ You can have as many words as you want on each line or spread

them across multiple lines.
¥ However, you should be consistent and follow the programming

guidelines given for assignments.
n It will be easier for you to program and easier for the marker to mark.

¥ You can use “Auto Format” PDE feature to rearrange your code in
a more readable form

Okana gan

COSC 123

Computer Creativity

Okana gan

COSC 123

Computer Creativity

Slides courtesy of Dr. Abdallah Mohamed.

Primitive Shapes, Text
Notes

¥ These are some notes for you to work on outside of class. After

finishing these notes, you should be able to:
¥ Recognize and use primitive shape functions

n point(), line(), rect(), ellipse(), quad(), triangle(), bezier()

¥ Understand and specify shape coordinates
n i.e. specify the reference point or origin of a shape.

¥ Specify the attributes of drawing stroke.

¥ Write text on your sketch

COSC 123 – 45COSC 123 – 45

Drawing Primitive Shapes
¥ You learned before how to draw some of the primitive shapes,

namely: point, line, ellipse, and rectangle.

¥ There are other primitive shapes that we can also use such as:
the quad, the triangle, and the Bezier line.

COSC 123 – 46COSC 123 – 46

Primitive Shapes

point(x,y)

(x,y)

ellipse(x,y,w,h)w

h
(x,y)

rect(x,y,w,h)

(x,y)

w

h
triangle(x1,y1,x2,y2,x3,y3)

(x1,y1)

(x2,y2) (x3,y3)

quad(x1,y1,x2,y2,x3,y3,x4,y4)

(x1,y1)

(x2,y2) (x3,y3)

(x4,y4)

bezier(x1,y1,cx1,cy1,cx2,cy2,x2,y2)

(x1,y1)

(x2,y2)
(cx2,cy2)

(cx1,cy1)

line(x1,y1,x2,y2)(x2,y2)

(x1,y1)

COSC 123 – 47COSC 123 – 47

Example

Primitive Shapes

quad(10,10,20,40,80,80,90,20);

ellipse(50,30,20,20);

triangle(50,40,25,75,75,75);

bezier(10,90,30,60,70,120,90,90);

COSC 123 – 48COSC 123 – 48

Defualt Shape Coordinates
¥ The default coordinates for rect and ellipse are:

rect(Top_Left_X, Top_Left_Y, Width, Height)

ellipse(Center_X, Center_Y, Width, Height)

àCORNER

àCENTER

Width

He
ig

ht (X, Y)

(X, Y)

Width

He
ig

ht

COSC 123 – 49COSC 123 – 49

Specifying Shape Coordinates
¥ Default coordinates can be explicitly set to one of three modes:

¥ CENTER
(Center_X, Center_Y, Width, Height)

¥ CORNER
(Top_Left_X, Top_Left_Y, Width, Height)

¥ CORNERS
(Top_Left_X, Top_Left_Y, Bottom_Right_X, Bottom_Right_Y)

¥ The above applies to rect and ellipse but not necessarily to all shapes

COSC 123 – 50COSC 123 – 50

Specifying Shape Coordinates, cont’d
¥ You can change the mode using rectMode and ellipseMode

functions.

¥ Question: Can you link each statement to the right shape?

// set the sketch size

size(100,100);

// draw

rectMode(CORNER); //this is the default mode

rect(20,20,30,30);

rectMode(CENTER); //default is CORNER

rect(20,20,30,30);

rectMode(CORNERS); //default is CORNER

rect(20,20,30,30);

200 40 60 80 100

80
10

0
60

40
20

COSC 123 – 51COSC 123 – 51

Stroke Attributes
¥ Stroke attributes are controlled by:

¥ strokeWeight(): Sets the width of the stroke in pixels. Takes one
number (the width). Default is 1 pixel.

¥ strokeCap(): Sets the endpoints. Takes one parameter that can
be ROUND, SQUARE, or PROJECT. Default is ROUND.

¥ strokeJoin(): Determines how line segments connect including the
corners of any shape. Takes one parameter that can be MITER,
BEVEL, or ROUND. Default is MITER.

strokeWeight(20);
strokeCap(ROUND);
line(20, 20, 80, 20);
strokeCap(SQUARE);
line(20, 50, 80, 50);
strokeCap(PROJECT);
line(20, 80, 80, 80);

strokeWeight(10);
strokeJoin(MITER);
rect(10, 10, 30, 30);
strokeJoin(BEVEL);
rect(10, 60, 30, 30);
strokeJoin(ROUND);
rect(60, 60, 30, 30);

Drawing Text

COSC 123 – 53COSC 123 – 53

Drawing Text
¥ You can add text to your sketch using the following functions:

¥ textSize(20) changes the text size to 20

¥ text("Hello!", x, y) writes “Hello!” at (x,y)

¥ Use textAlign() to align the text.
¥ Default is “left-bottom.

(x, y) Hello!

LEFT,BOTTOM alignment

Hello!

CENTER,CENTER alignment

Hello!

CENTER,TOP alignment

COSC 123 – 54COSC 123 – 54

Drawing Text
¥ You can also define a textbox so that text wraps inside it using

the syntax

text("long text here",x,y,width,height)

n Note: width and height parameters are optional

¥ FONT
¥ To change the font, you need two functions: loadFont() and
textFont().

n More about this later

¥ COLOR
¥ To change the text color, use the fill function

n More about this later

COSC 123 – 55COSC 123 – 55

Example

size(140,120);
fill(0); // write in black

textAlign(CENTER);
textSize(28);
text("UBC", 70, 30);

textSize(18);
text("Okanagan", 70, 50);

textSize(12);
text("Computer Science", 70, 70);

textSize(10);
text("1177 Research Rd, Kelowna, BC V1V 1V7", 10,85,120,40);

Okana gan

COSC 123

Computer Creativity

Okana gan

COSC 123

Computer Creativity

Slides courtesy of Dr. Abdallah Mohamed.

Primitive Shapes, Text

COSC 123 – 57COSC 123 – 57

The Notes
¥ Your notes for this week included discussion of:

¥ Primitive shape functions
n point(), line(), rect(), ellipse(), quad(), triangle(), bezier()

¥ Shape coordinates (origin)

¥ Stroke attributes

¥ Text

First:
¥ self-assess your understanding of the pre-class readings

Then:

1) Practice on primitive shapes and text

COSC 123 – 59COSC 123 – 59

QuestionQuestion

Shape Coordinates
The default coordinates for rectangles and ellipses are:

A. CORNER for both

B. CENTER for both

C. CENTER for rectangles, and CORNER for ellipses

D. CORNER for rectangles, and CENTER for ellipses

E. None of the above

COSC 123 – 60COSC 123 – 60

QuestionQuestion

Shape Coordinates
We can change the coordinates of a rectangle to CENTER using
the statement:

A. coordinate(CENTER);

B. center();

C. rectMode(CENTER);

D. mode(CENTER);

E. CENTER;

COSC 123 – 61COSC 123 – 61

QuestionQuestion

Specifying Shape Coordinates
Which coordinate mode did we use here?

A. CORNER

B. CORNERS

C. CENTER

D. CENTERS

E. Other

size(100,100);

rectMode(?????);

rect(40,40,50,50);

COSC 123 – 62COSC 123 – 62

QuestionQuestion

Stroke Attributes
We can change the width of the drawing stroke using the
function:

A. width()

B. strokeWdith()

C. weight()

D. strokeWeight()

E. stroke()

COSC 123 – 63COSC 123 – 63

QuestionQuestion

Text
The statement to write “Hi” on the sketch at (50,50) is

A. write("Hi",50,50);

B. text("Hi",50,50);

C. text(50,50,"Hi");

D. writeText("Hi",50,50);

E. drawText("Hi",50,50);

COSC 123 – 64COSC 123 – 64

QuestionQuestion

Bezier shapes
Have you understood how bezier function work?

A. Yes

B. No

bezier(x1,y1,cx1,cy1,cx2,cy2,x2,y2)

(x1,y1)

(x2,y2)
(cx2,cy2)

(cx1,cy1)

PDE Features

Notes

COSC 123 – 66COSC 123 – 66

PDE Useful features
¥ Use Edit->Auto Format (or Ctrl+T) to automatically adjust

code format to be more readable (i.e. indentation, spacing, etc.).
¥ Use Ctrl+/ to comment/uncomment a selected section of code.
¥ Use Auto Compete (Ctrl+Space) to get code suggestions

¥ enable from File->Preferences (next slide)

¥ Use the Color Selector (Tools->Color Selector…) to get the
value of a color of your choice.

¥ You can view many examples that demonstrate the different
capabilities of Processing by going to File->Examples…

¥ You can add other files (images, fonts, documents, etc.) to use
in your sketch from Sketch->Add File…
¥ This can also be done using your preferred file manager (e.g.

Windows Explorer), but we will discuss this later.

COSC 123 – 67COSC 123 – 67

Code Completion
¥ It is recommended to use

Code Completion feature. You
can enable it by going to
File->Preferences and
check that option as shown in
the figure.

COSC 123 – 68COSC 123 – 68

Sketchbook Tabs
¥ You can divide your

code into several files
managed by tabs for
better structuring.
¥ PDE arranges tabs

alphabetically by
their names.

¥ The code in all tabs
will run as if it is in the
same file.
¥ Tabs run from left to

right.
¥ Examples:

¥ Put classes in tabs.
¥ Put your new

functions in tabs.

Managing tabs: click on this arrow
button to manage the tabs

COSC 123 – 69COSC 123 – 69

Processing Language Reference
¥ You can view a complete

reference for the language using
Help->Reference

¥ If you need help with specific
keyword, highlight it then choose
Find in Reference From the
Help menu or the context menu.

COSC 123 – 70COSC 123 – 70

PDE Debugger
You can enable the debugging mode from the Debug menu or by
clicking the Debugger icon .

Breakpoint: you can toggle breakpoints
from the Debug menu or by clicking
the line number.

Variables: you
can observe
how your
variables
change here

Debugger functions:
• Debug: run till the first

breakpoint
• Continue: advance the

code till the next
breakpoint.

• Step: advance the code
one line.

• Step Into: advance the
debugger into the a
function call.

• Step Out: advance the
debugger outside a
function to the calling
statement.

COSC 123 – 71COSC 123 – 71

ExerciseExercise

Using PDE Debugger to Trace Code
¥ Use the PDE Debugger to trace the following code. Notice the

change in the x and y values.
¥ Step 1: Switch to Debugging mode
¥ Step 2: Put a breakpoint at the first line.
¥ Step 3: Click Run (Debug).
¥ Step 4: Step through your code

and observe the change in x,y and in
the console

No need to submit this to Canvas!!

2

int x, y = 20;
x = 10;
println("x: " + x);
println("y: " + y);
x = x + 3;
y = y + x;
println("x: " + x);
println("y: " + y);
println("The End!");

COSC 123 – 72COSC 123 – 72

Tips for Debugging Your Code
¥ Here are some tips that you may want to try when debugging

your code:
¥ Trace changes in your variables.

n If you are not using the PDE Debugger, you can programmatically
display the values of those variables related to your problem after they
change.

n You can use println() or text() functions to display the values.
¥ Simplify your code.

n …using comments. Test segments of your code individually and see if
they run as expected.

¥ Take a break!
n Do something else or even go to sleep. When you come back, you

might see what you weren’t able to see before.
¥ Get “someone” to look at your code.

n Fresh eyes might catch obvious mistakes that you aren’t able to see.

Accept the GH Classroom Link on the
course website:

Canvas > Course Content > GitHub Classroom Links > Lecture
Activities

Lecture Activity 3

COSC 123 – 74COSC 123 – 74

Lecture Activity Task

Draw Primitive Shapes
¥ Write code to draw the following sketches. Assume reasonable

dimensions.

(a) (b)

¥ Hint: sketch your drawing on paper first, try to figure out the
coordinates, then write code

COSC 123 – 75COSC 123 – 75

Lecture Activity Task

Create A Character
¥ Write code to design a simple character:

¥ We will use this character throughout the semester in
other exercises. So, try to be creative!

¥ No need to worry about the color at this point.

¥ Use the easiest drawing mode for aligning your body
parts.

n For example, it would be easier if we use the
CENTER drawing mode for the torso.

¥ Include the following items:
n A belt (stroke with larger width)
n A logo on the character chest.

¥ The design must have at least one character of text.

¥ Hint: sketch your drawing on paper first, try to figure
out the coordinates, then write code

